hello, please Sign in/Register for China Account
Welcome to perfectlight

PLS-SXE300 Xenon lamp light source

Product classification:Xenon light brand:perfectlight view count:1984

PLS-SXE300 Xenon light source(Photocatalytic experiment xenon light source)


Research purpose:

PLS-SXE300 series light source is a popular 300W light source, It has been selling well since its launch in 2006. PLS - SXE300 series light source was upgraded since October 2012, its basic current ripple level is consistent with the C series and Microsolar300 series. In addition, the cooling system was improved at the same time, further improving the cost performance of this series.


Main technical parameters and characteristics:

◆ High cost performance
◆ Stable power supply system
◆ Good cooling system
◆ Adequate irradiance intensity



Product model

PLS-SXE300

PLS-SXE300UV

Output light power

50W

50W

Spectrum range

300-2500nm

200-2500nm

Output power (UV)

2.6W

6.6W

Output power (VIS)

19.6W

17.6W

Power supply ripple

±0.3%Peak-peak value

±0.3%Peak-peak value

Light instability (Transient)

<±0.5%

<±0.5%

Light instability (Period)

<±6%(10H)

<±6%(10H)

Working mode

Electrical control mode

Electrical control mode

Light spot diameter

30-63mm

30-63mm

beam-divergence angle

5°-8°(Depend on the bulb)

5°-8°(Depend on the bulb)

Filter mode

Multistage filter and steering gear

Multistage filter and steering gear

Light box material

Metal material

Metal material

Light box volume

160(L)*210(W)*200(H)mm

160(L)*210(W)*200(H)mm

Cooling methods

Radial cooling module + metal fan

Radial cooling module + metal fan

Working temperature of anode radiator

78°C (Permissive temperature: 112°C)

78°C(Permissive temperature:112°C)

Bulb lifetime

≥1000H

≥1000H



[1] Z. Zhang, Y. Zhao, J. Shen, et al., Synthesis of 1D Bi12O17ClxBr2−x nanotube solid solutions with rich oxygen vacancies for highly efficient removal of organic pollutants under visible light, Applied Catalysis B: Environmental, 2020, 269, 118774.

[2] F. Chen, Z. Ma, L. Ye, et al., Macroscopic Spontaneous Polarization and Surface Oxygen Vacancies Collaboratively Boosting CO2 Photoreduction on BiOIO3 Single Crystals, Advanced Materials, 2020, 32, 1908350.

[3] X. Jiao, Z. Chen, X. Li, et al., Defect-Mediated Electron-Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction, J Am Chem Soc, 2017, 139, 7586-7594.

[4] G. Li, L. Xu, W. Zhang, et al., Narrow-Bandgap Chalcogenoviologens for Electrochromism and Visible-Light-Driven Hydrogen Evolution, Angew Chem Int Ed Engl, 2018, 57, 4897-4901.