hello, please Sign in/Register for China Account
Welcome to perfectlight
Recommended Products
Labsolar-IIIAG On-line photocatalytic analysis system
View details
Labsolar-6a All-glass automatic on-line trace gas analysis system
View details

Labsolar-6a All-glass automatic on-line trace gas analysis system

Product classification:Photodegradation system brand:perfectlight view count:58545

Research purpose:

a photocatalytic reaction device with extremely high air tightness, completely inert, automated trace gas on-line detection.

System features

Labsolar-6A photocatalytic test device, composed of all-glass high air tightness system (including automatic multi-pass sampling valve, top/side illumination reactor, recycle condensation vacuum, etc.), protection cover, detection control parts and other components; Suitable for photocatalysis, membrane photocatalysis, photoelectrochemical reaction and so on in liquid-solid, gas-solid, gas-liquid-solid and other multi-phase systems at low pressure under certain temperature conditions. Especially suitable for vacuum photochemical reaction test with high air tightness requirements, the system has the following characteristics:

High system airtight performance; Leakage rate is less than 5 × 10-5Pa ? L / s in the glass system, and the glass part is of good stability and reliability.

Multi-valve automatic sampling; Automatic sampling on-line with a multi-pass valve group and testing in the matching chromatography; A multi-valve manifold for convenient operation.

System status is available at any time, Labsolar-6A photocatalytic test device monitors the system reaction pressure, temperature, automatic multi-valve status and so on.

Basic parameters

Vacuum:-0.1MPa; (>24h, Dynamic Gas-tightness Test of Gas Chromatography); Leakage rate < 5×10-5Pa·L/s;

Multi-pass high vacuum valve, no dead volume sampling mechanism; (deny mistaken gas carrier extraction);

Two modes of online automatic control and independent manual control are supported simultaneously;

Standard curve linear regression degree: hydrogen yield 100~400ul, R2>0.9999;

System cycling part volume 80mL; (without reactor)

Quantitative loop volume: 0.1ml; 0.2ml; 0.5ml; 1ml alternative (Customization available).

Multi-pass high vacuum valve, real-time display of valve position while automatic controlling, security protection early warning function.

应用领域: 膜光催化
应用领域: 光降解气体污染物
应用领域: 光热催化(负压常压体系)
应用领域: PEC光电化学
应用领域: 光催化量子效率测量
应用领域: 电化学
应用领域: 光催化CO2还原
应用领域: 光催化全分解水
应用领域: 光催化分解水制氢/氧

[1] Liu Zhihe, Liu Hong. Metallic intermediate phase inducing morphological transformation in thermal nitridation: Ni3FeN-based three-dimensional hierarchical electrocatalyst for water splitting. ACS Applied Materials & Interfaces201810: 3699.

[2] You Feifei, Wang Dan. Lattice distortion in hollow multi-shelled structures for efficient visible-light CO2 reduction with a SnS2/SnO2 Junction. Angewandte Chemie International Edition202059721.

[3] Z. Jiang, X. Xu, Y. Ma, et al., Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction, Nature, 2020.

[4] Y. Huang, C. Liu, M. Li, et al., Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics, ACS Catalysis, 2020, 10, 3904-3910.

[5] H. Wang, H. Rong, D. Wang, et al., Highly Selective Photoreduction of CO2 with Suppressing H2 Evolution by Plasmonic Au/CdSe-Cu2O Hierarchical Nanostructures under Visible Light, Small, 2020, 16, 2000426.

[6] Y. Zhu, X. Ma, Y. Xu, et al., Large dipole moment induced efficient bismuth chromate photocatalysts for wide-spectrum driven water oxidation and complete mineralization of pollutants, National Science Review, 2020, 7, 652-659.

[7] X. Chen, R. Shi, Q. Chen, et al., Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting, Nano Energy, 2019, 59, 644-650.

[8] Xu Yangsen, Su Chenliang. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon mitride capable of near-infrared photocatalytic H2 production. Advanced Materials, 202133e2101455.

[9] Zhao Yue, Li Can. A Hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angewandte Chemie International Edition2020, 59: 9653.

[10] Cai Mujin, He Le. Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy2021, 6: 807.

[11] Changzhi Han, Chong Zhang, Jia-Xing Jiang et. al. A Universal Strategy for Boosting Hydrogen Evolution Activity of Polymer Photocatalysts under Visible Light by Inserting a Narrow-Band-Gap Spacer between Donor and A. Advanced. Functional. Materials 2022, 2109423.

[12] Hongjun Dong, Yan Zuo, Mengya Xiao, Tingxu Zhou, Shasha Cheng, Gang Chen, Jingxue Sun, Ming Yan,* and Chunmei Li* , Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution, ACS Appl. Mater. Interfaces 13 (2021) 56273−56284.

[13] Chen, J.; Zhu, X.; Jiang, Z.; Zhang, W.; Ji, H.; Zhu, X.; Song, Y.; Mo, Z.; Li, H.; Xu, H., Construction of brown mesoporous carbon nitride with a wide spectral response for high performance photocatalytic H2 evolution. Inorganic Chemistry Frontiers 2021.

[14] Cao X, Zhang L, Guo C, et al. Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance [J]. Int J Hydrogen Energ, 2021. https://doi.org/10.1016/j.ijhydene.2021.11.016.

[15] Wang, X., Wang, X., Tian, W. et al. High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo–N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution.  Applied Catalysis B: Environmental 303 (2022) 120933.

[16] Zeng, H., Wang, Y., Huang, K., Feng, S., et. al.Interfacial Engineering of TiO2/Ti3C2 MXene/Carbon Nitride Hybrids Boosting Charge Transfer for Efficient Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2021, 2102765.

[17] Jun Chen, Si-Jia Wu, Wen-Jun Cui, et al. Nickel clusters accelerating hierarchical zinc indium sulfide nanoflowers for unprecedented visible-light hydrogen production. Journal of Colloid and Interface Science 2022, 608, 504-512.

[18] Xu C, Li D, Liu X, et al. Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis. Chemical Engineering Journal, 2021: 132861.

[19] Chengqun Xu*Chengqun Xu, Xiaolu Liu, Dezhi Li, Zeyuan Chen, Jiale Yang, Janjer Huang, and Hui Pan*,Coordination of π-Delocalization in g-C3N4 for Efficient Photocatalytic Hydrogen Evolution under Visible Light,ACS Appl. Mater. Interfaces 2021, 13, 17,20114–20124.

[20] Xue Ma, Hefa Cheng*, Facet-Dependent Photocatalytic H2O2 Production of Single Phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 Composites. Chemical Engineering Journal, 429 (2022) 132373.

[21] Wenling Zhao et. al. Unblocked intramolecular charge transfer for enhanced CO2 photoreduction enabled by an imidazolium-based ionic conjugated microporous polymer. Applied Catalysis B: Environmental 2021, 300, 120719.

[22] Yuanyuan Li, Shengli Zhu, Xiangchen Kong, Yanqin Liang, Zhaoyang Li, Shuilin Wu, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui, ZIF-67 Derived Co@NC/g-C3N4 as a Photocatalyst for Enhanced Water Splitting H2 Evolution. Environmental Research. 2021, 197: 111002. 

[23] Yonggang Lei, Xingwang Wu, Shuhui Li, Jianying Huang, Kim Hoong Ng, YuekunLai*. Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 2021, 322, 129018.

[24] W. Zhou, S. Lu, X. Chen, Anionic donor-acceptor conjugated polymer dots/g-C3N4 nanosheets heterojunction: high efficiency and excellent stability for co-catalyst-free photocatalytic hydrogen evolution, Journal of Colloid and Interface Science (2021).

[25] Zhang, Zhenzong, Yuxin Cao, Fenghao Zhang, et. al. Tungsten Oxide Quantum Dots Deposited onto Ultrathin CdIn2S4 Nanosheets for Efficient S-Scheme Photocatalytic CO2 Reduction Via Cascade Charge Transfer." Chemical Engineering Journal 2022, 428, 131218.

[26] Sihui Xiang, Chong Zhang, Jiaxing Jiang et. al. Structure evolution of thiophene-containing conjugated polymer photocatalysts for high-efficiency photocatalytic hydrogen production. Science China Materals 2021.

[27] Mo-O-Bi Bonds as Interfacial Electron Transport Bridges to Fuel CO2 Photoreduction Via In-Situ Reconstruction of Black Bi2MoO6/BiO2-x Heterojunction

[28] Yu-Bo Hu, Yu-Xiang Liu, Jun Wu, Yu-Da Li, Jia-Xing Jiang, Feng Wang, A Case Study on a Soluble Dibenzothiophene-S,S-dioxide-Based Conjugated Polyelectrolyte for Photocatalytic Hydrogen Production:The Film versus the Bulk Material, ACS Materials & Interfaces, 2021, 13, 36, 42753-42762.

[29] Hanbo Yu, Jinhui Huang, Longbo Jiang et. al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120618.

[30] Yonggang Lei, Yingzhen Zhang, Zengxing Li, Shen Xu, Jianying Huang, Kim Hoong Ng, Yuekun Lai*. Molybdenum sulfde cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal 2021, 425, 131478.

[31] Wang, X., Wang, X., Huang, J. et al. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat .Commun .12, 4112 (2021). 

[32] Bocheng Qiu, Cheng Lian, and Jinlong Zhang et. al. Realization of all-in-one hydrogen-evolving photocatalysts via selective atomic substitution. Applied Catalysis B: Environmental, 2021, 298, 120518.

[33] Chi Ma, Jingjing Wei, Kainian Jiang et. al. Self-assembled micro-flowers of ultrathin Au/BiOCOOH nanosheets photocatalytic degradation of tetracycline hydrochloride and reduction of CO2Chemosphere 2021, 283, 131228.

[34] Chunmei Li, Huihui Wu, Daqiang Zhu, Tingxu Zhou, MingYan, Gang Chen, Jingxue Sun, Gang Dai, Fei Ge, Hongjun Dong*, High-efficientcharge separation driven directionally by pyridine rings grafted on carbonnitride edge for boosting photocatalytic hydrogen evolution, Applied Catalysis B: Environmental 297 (2021) 120433.

[35] Hongqiang Jin, Yu Yu, Qikai Shen et. al. Directly Synthesis of 1T-phase MoS2 Nanosheets with Abundance Sulfur-Vacancies through (CH3)4N+ Cations-Intercalation for Hydrogen Evolution. J. Mater. Chem. A, 2021, Accepted Manuscript.

[36] Zhao H, Yu X, Li C F, et al. Carbon quantum dots modified TiO2 composites for hydrogen production and selective glucose photoreforming. Journal of Energy Chemistry, 2022, 64: 201-208.

[37] Erhuan Zhang, Jia Liu, Jiatao Zhang et. al.Visually Resolving the Direct Z-Scheme Heterojunction in CdS@ZnIn2S4 Hollow Cubes for Photocatalytic Evolution of H2 and H2O2 from Pure Water. Applied Catalysis B: Environmental. 293 (2021) 120213. 

[38] Guangbo Wang, Yan Geng, Yubin Dong et. al. Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications 2021, doi.org/10.1039/D1CC00854D.

[39] Kou M, Liu W, Wang Y, et al. Photocatalytic  CO2 Conversion Over Single-atom MoN2 Sites of Covalent Organic Framework. Applied Catalysis B: Environmental, 2021, 291, 120146.

[40] Heng Yang, Chao Yang, Nannan Zhang, Kaili Mo, Qin Li, Kangle Lv*, Jiajie Fan, Lili Wen*, Drastic promotion of the photoreactivity of MOF ultrathin nanosheets towards hydrogen production by deposition with CdS nanorods. Applied Catalysis B: Environmental, 2021, 285, 119801.

[41] Chao Peng, Xi Xie, Wenkang Xu et. al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chemical Engineering Journal 2021, https://doi.org/10.1016/j.cej.2021.128766

[42] Fengyu Tian,Honglei Zhang,Shuai Liu,TaoWu,Jiahui Yu,Dihua Wang,Xianbo Jin,Chuang Peng*,Visible-light-driven CO2 reduction to ethylene on CdS: Enabled by structural relaxation-induced intermediate dimerization and enhanced by ZIF-8 coating. Appl. Catal. B: Environ. 2020. https://doi.org/10.1016/j.apcatb.2020.119834

[43] Metal-Organic Frameworks Decorated Cuprous Oxide Nanowires for Long-lived Charges Applied in Selective Photocatalytic CO2 Reduction to CH4Hao Wu,Xin Ying Kong,Xiaoming Wen,Siang-Piao Chai,Emma C. Lovell,Junwang Tang,Yun Hau Ng

[44] JunLi,BaojingHuang,QiangGuo,ShengGuo,ZhikunPeng,JinLiu,QingyongTina,YongpengYang,QunXu,ZhongyiLiu,BinLiu,Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction,Applied Catalysis B: Environmental,2021, 119733

[45] Dr. Junqing Yan ,Dr. Yujin Ji  ,Dr. Munkhbayar Batmunkh  ,Dr. Pengfei An  ,Dr. Jing Zhang  ,Yang Fu  ,Prof. Baohua Jia  ,Prof. Youyong Li  ,Prof. Shengzhong Liu  ,Prof. Jinhua Ye  ,Prof. Tianyi Ma,Breaking Platinum Nanoparticles to Single‐Atomic Pt‐C4 Co‐catalysts for Enhanced Solar‐to‐Hydrogen Conversion, Angewandte Chemie-International Edition

[46] Ke Guo, Xiaoli Zhu, Lianlian Peng, Yanghe Fu*, Rui Ma, Xinqing Lu, Fumin Zhang, Weidong Zhu*, Maohong Fan*, Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal 2021, 405, 127011

[47]  L. Wang, L. Xie, W. Zhao, S. Liu, Q. Zhao, Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution, Chemical Engineering Journal 405 (2021) 127028. 

[48] Yunxiang Li,shengyao Wang,Xu-sheng Wang,Yu He,Qi Wang,Yingbo Li,Mengli Li,Gaoliang Yang,Jundong Yi,Huiwen Lin,Dekang Huang,Lan Li,Hao Chen,and Jinhua Ye. Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO2 Photoreduction. Journal of the American Chemical Society 

[49] Changfa Guo, Lei Li, Fang Chen, Jiqiang Ning, Yijun Zhong, Yong Hu,One-step phosphorization preparation of gradient-P-doped CdS/CoP hybrid nanorods having multiple channel charge separation for photocatalytic reduction of water, Journal of Colloid and Interface Science 2021, 596, 431-441. 

[50] Wang X, Wang X, et al. nterfacial engineering improved internal electric field contributing to direct Z-scheme-dominated mechanism over CdSe/SL-ZnIn2S4/MoSe2 heterojunction for efficient photocatalytic hydrogen. Chemical Engineering Journal 431 (2022) 134000

[51] X. Zhan, Z. Fang, B. Li, H. Zhang, L. Xu, H. Hou, W. Yang, Rationally designed Ta3N5@ReS2 heterojunctions for promoted photocatalytic hydrogen production, J. Mater. Chem. A. 2021, 9, 27084-27094.

[52] Xingwang Zhu,Xingwang Zhu, Guli Zhou, Jianjian Yi, Penghui Ding, Jinman Yang, Kang Zhong, Yanhua Song*, Yingjie Hua, Xianglin Zhu, Junjie Yuan*, Yuanbin She, Huaming Li, and Hui Xu*,Accelerated Photoreduction of CO2 to CO over a Stable Heterostructure with a Seamless Interface,ACS Appl. Mater. Interfaces 2021, 13, 33, 39523–39532.

[53] Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared-photocatalytic H2 production, Advanced Materials, 2021, DOI: 10.1002/adma.202101455.

[54] Sheng, Y., Li, W., Zhu, Y., & Zhang, L. (2021). Ultrathin Perylene Imide Nanosheet with Fast Charge Transfer Enhances Photocatalytic Performance. Applied Catalysis B: Environmental, 120585.

[55] Xingwang Zhu,Yitao Cao,Yanhua Song,Jinman Yang,Xiaojie She,Zhao Mo,Yuanbin She,Qing Yu,Xianglin Zhu,Junjie Yuan,Huaming Li,Hui Xu,Unique Dual-Sites Boosting Overall CO2 Photoconversion by Hierarchical Electron Harvesters,Small, 2021,2103796

[56] Bin Wang, Junze Zhao, Hailong Chen, Yu-Xiang Weng, Hua Tang, Ziran Chen, Wenshuai Zhu, Yuanbin She, Jiexiang Xia, Huaming Li, Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction, Applied Catalysis B: Environmental 293 (2021) 120182.

[57] Lei Li, Changfa Guo, Jiqiang Ning, Yijun Zhong, Deli Chen and Yong Hu, Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient ifunctional photocatalyst for CO2 conversion and water oxidation, Applied Catalysis B: Environmental.

[58] XupengZong,LijuanNiu,WenshuaiJiang,YanminYu,LiAn,DanQu,XiayanWang,ZaichengSun,Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation,Applied Catalysis B: Environmental,2021, 120099